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I. Soft X-ray resonant inelastic scattering (RIXS)

is increasingly important in the study of electronic

properties of strongly correlated 3d systems[1].

Measurements of d-d excitations that correspond to

local rearrangements of the valence 3d electrons pro-

vide a valuable piece of information on the interplay

between spin, orbital and lattice degrees of freedom

in these systems.

Spectral properties related to the low-energy d-

d excitations in nearly cubic vanadium perovskites

RVO3 (with R=Y or trivalent rare earth ion) have

been examined by us[2] for the expected L-edge

resonant inelastic X-ray scattering measurements.

Multiplet structure of V3+ ion in the basic t22g

electron configuration is calculated with the help

of ab initio quantum-chemical(QC) method applied

to [R8VO6]
15+ cluster, Fig.1, embedded in a crys-

talline environment. The relative energy position of

different terms can be well described as follows:

E(
3A2) = ∆t, E(

1A′1) = 2JH − ∆E
′, E(

1E) = 2JH ,

E(
1B1) = E(

1B2) = ∆t + 2JH , E(
1A1) = 5JH + ∆E

′,

where ∆E
′

≈ ∆t[1 + (∆t/JH)]/3, for ∆t/JH < 1/2.

For YVO3, the QC calculations yield the estimates

∆t ≈ 0.2eV and JH ≈ 0.5eV.

In our QC cluster approach[3] based on the

use of MOLPRO computer program [4], the

wavefunctions and energies of electron configura-

Figure 1: Cluster [Y8VO6]
15+ chosen for quantum

chemical calculations. The large dark circles are

yttrium, the smaller grey circles are oxygen, and

the central open circle is vanadium.

Figure 2: Multiplet structure of t22g configuration of

V3+ ion in crystal field of D4h symmetry. In RIXS

the initial (ground) state is given by 3E and other

terms correspond to local d − d excitations.

tions are calculated at different levels of accu-

racy - from the Hartree-Fock self-consistent field

(HFSCF) method through a multi-configuration

self-consistent field (MCSCF) ansatz to the

multi-reference configuration-interaction method

(MRCI).

The term energies obtained in the MRCI calcu-

lations are given schematically in Fig.2. The low-

energy part of the RIXS spectra is expected to ex-

hibit the multiplet structure of t22g configuration.

RIXS is described by second-order processes of

interaction between photons and a matter.The in-

coming photon with momentum h̄k and energy

h̄ωk tuned close to the L-edge absorption promotes

an electron from the 2p shell to an empty 3d va-

lence state, thus producing an intermediate core-

hole state |(t32gp)[i]〉. In a subsequent radiative de-

cay of the core hole the emitted (h̄k
′, h̄ωk′) pho-

ton leaves the 3d electron system in an excited

state |(t22g)[f ]〉 with momentum h̄(k − k
′) and en-

ergy h̄(ωk − ωk′) that are measured. For given po-

larization vectors ε and ε
′ of the incoming and and

outgoing photons, respectively, the scattering am-

plitude of the second-order resonant processes gov-

erned by the transition dipole operator Dk can be

written as [1]:

F
ε′ε
fg (k

′,k; zk) = (1)
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〈(t22g)[f ]|(ε
′
Dk′)

†

G(zk)(εDk)|(t22g)[g]〉

Here, the initial (ground) and excited (final) states

are denoted as |(t22g)[g]〉 and |(t22g)[f ]〉, respectively,

[g] and [f ] are the shortenings for the quantum num-

bers. G(zk) is the intermediate-state propagator

which describes the system in the presence of a core

hole:

G(zk) =

∑

{i}

|(t32gp)[i]〉〈(t
3
2gp)[i]|

zk − E[i]
, (2)

where zk = h̄ωk + iΥ, for E[g] = 0, and the life-

time broadening Υ of intermediate core-hole states

is taken to be independent on the state index [i].

In the intermediate states of the RIXS process

the induced 2p-core hole was taken into account

by including strong 2p-3d electron interactions. A

symmetry-group approach was applied to generate

the basis set of many-electron wavefunctions of the

intermediate core-hole states accessible in RIXS

processes. Although a comprehensive description of

the core-hole multiplets still remains a formidable

task and requires using specially designed nu-

merical codes, for particular resonant states the

analysis was simplified and the calculation of RIXS

amplitude have been carried out analytically to the

end.[2]

II. In the work [5] we have implemented ab initio

QC cluster calculations to the analysis of magnetic

interactions in layered iridate Ba2IrO4. Peculiar

magnetic properties of layered iridium oxides like

A2IrO4 (A=Sr, Ba) and Na2IrO3 are due to delicate

cooperation of electron hopping, on-site Coulomb

and exchange interactions, crystal-field splitting of

t2g orbitals, and strong spin-orbit coupling (SOC)

on Ir ions.

Low-energy properties of insulating iridates can

be accurately described in terms of a pseudospin-

1/2 magnetic model

Hij = J S̃i ·S̃j +Γ
‖
S̃x

i S̃x
j +Γ

⊥
S̃

y
i S̃

y
j +Γ

zzS̃z
i S̃z

j , (3)

Without loss of generality the diagonal matrix Γ is

taken to be traceless and then, for instance, Γzz =

−(Γ
‖
+Γ
⊥

). Four eigenstates of Eq.3 are the singlet

|ΨS〉 = | ↑↓ − ↓↑〉/
√

2 and triplet states

|Ψ1〉 = | ↑↓ + ↓↑)〉/
√

2, |Ψ2〉 = (↑↑ + ↓↓)/〉
√

2,

and |Ψ3〉 = (↑↑ − ↓↓)〉/
√

2.

The corresponding eigenvalues are

ES = −
3

4
J,

E1 =
1

4
J +

1

2

(

Γ
‖

+ Γ
⊥

)

,

E2 =
1

4
J −

1

2
Γ
⊥

, E3 =
1

4
J −

1

2
Γ
‖
. (4)

Table 1: Energy splittings for the four lowest spin

states of two NN IrO6 octahedra and the calculated

magnetic coupling constants (all in meV)

States/Method CAS+SOC MRCI+SOC

ΨS(A1g) = (↑↓ − ↓↑)/
√

2 0.0 0.0

Ψ3(A1u) = (↑↑ − ↓↓)/
√

2 37.5 65.0

Ψ1(B2u) = (↑↓ + ↓↑)/
√

2 38.2 66.7

Ψ2(B1u) = (↑↑ + ↓↓)/
√

2 38.2 66.7
(J̄ ,Γ̄

‖
) (36.8,0.75) (65.02,3.4)

Of the 36 spin-orbit states that are obtained in

QC calculations, the lowest four magnetic states

which correspond to the low energy magnetic

Hamiltonian in Eq. 3 are shown in Table 1 both

at CASSCF (CAS+SOC) and MRCI (MRCI+SOC)

levels.

The assignment of these states is made based on

the nature of the dipole and quadrupole transition

matrix elements, available in molpro. The singlet

ΨS for which S̃tot = S̃i + S̃j = 0 is well below from

the set of S̃tot = 1 triplet states that are partially

and weakly split thus indicating a large antiferro-

magnetic Heisenberg interaction J and a weak sym-

metric anisotropy ∼ Γ. The QC calculations show

that the triplet components Ψ1 and Ψ2 to be al-

most degenerate (differ by 0.1cm−1 in our results).

With the neglect of this small difference, the QC

calculations predicts an equality Γ
⊥

= Γzz.

Now the Hamiltonian in Eq.3 can be rewritten as

Hij = J̄ S̃i · S̃j + Γ̄
‖
S̃

γ
i S̃

γ
j , (5)

where J̄ = J + Γ
⊥

= 65.02meV, Γ̄
‖

= Γ
‖
− Γ

⊥
=

3.4meV, and γ = x(y) for a bond along x(y) axis

in the basal-plane of Ba2IrO4.

Below ∼ 240K, Ba2IrO4 exhibits a basal-plane

antiferromagnetic (AFM) order with collinear mag-

netic moments pointing along [1,1,0] direction. The

compass-like magnetic model, Eq.5, on the square

lattice of Ir ions is unable itself to predict the ob-

served magnetic structure, and we have added del-

icate terms of weak interplane interactions, which

selects the ground state suggested from experiment.

2D lattice model H =
∑

<i,j> Hij with couplings

J̄ À Γ̄
‖

> 0 dictates an AFM ordering in the

easy xy−plane. On the classical level, however,

the model shows a continuous degeneracy with re-

spect to rotation of the staggered magnetization

moment in the plane. To check a type of the ground

state structure selected with the ”order by disorder”

mechanism, we first assume that the AFM vector

makes an angle φ with x axis, and define the zero-

point quantum spin-wave energy (per spin) as fol-
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lows

EZP,2D(φ) =
1

2N

∑

q

(Ω+(q) + Ω
−

(q)) . (6)

Here, Ω
±

(q) are two branches of the spin-wave spec-

trum calculated with the model parameters J̄ , Γ̄
‖

from Table 1, and the summation is over the Bril-

louin zone. Numerical analysis of Eq.6 shows that

EZP,2D(φ) behaves as

EZP,2D(φ) = −K cos(4φ) + E0, (7)

with K = 2µeV and E0 is a constant. Thus, for

2D lattice model the quantum fluctuations favor the

AFM vector to point along a [1,0] direction within

the easy plane.

Recalling now that in the similar situation oc-

curring in several tetragonal planar cuprates with

the same ’214’ lattice structure as in Ba2IrO4, the

true ground state is provided by a special mecha-

nism due to weak interplane interactions. Assum-

ing that qualitatively the same 3D mechanism is

applicable to Ba2IrO4 as well, we summarize be-

low its main contributions to an expression for the

3D ground state energy and calculate a phase dia-

gram, which may help one to select a unique ground

state magnetic structure depending on parameters

of interplane magnetic coupling in tetragonal ’214’

iridates.

First of all, the potentially dominant isotropic ex-

change Jout between magnetic moments in adjacent

planes vanishes in the mean field sense because of

the geometrical frustration in ’214’ structure, how-

ever, this interaction contributes to the zero-point

energy. The angle φ defined above and indexed now

with an integer n, φ → φn, specifies a ground-state

direction of the AFM vector lying in the n−th plane.

Complementary to
∑

n EZP,2D(φn), the zero-point

energy acquires the additional term describing cor-

relations between adjacent planes

EZP,3D = −B
∑

n

cos(2φn − 2φn+1). (8)

Here, B = C3J
2
out/2J̄ , C3 is a small positive con-

stant and, hence, B > 0 (and both signs of Jout are

allowed). Eq.8 requires collinearity of the staggered

magnetizations in the adjacent planes.

Next, the frustration effects in NN magnetic cou-

pling of adjacent planes in the ’214’ structure are

canceled when one includes the interplane symmet-

ric anisotropy ∼ Γ
αβ
out. Since the midpoint of these

out-of-plane bonds is the inversion center, the anti-

symmetric anisotropy is excluded, Dout = 0. With

the use of symmetry arguments, we derived a con-

tribution to the ground-state energy in the following

form

Eaniso,3D = −A
∑

n

sin(φn + φn+1), (9)

Figure 3: Phase diagram for Ba2IrO4.

where the constant A is determined by a relative

strength of the symmetric anisotropy Γout.

The total ground state energy now reads as E =

EZP,2D + EZP,3D + Eaniso,3D and is considered in

the A − B parameter space and fixed K. Mini-

mization of E yields different 3D AFM structures

denoted in the diagram, Fig.3, as phases I, II, and

III. The main result of our subsequent analysis is

the following. The collinear AFM structure experi-

mentally observed in Ba2IrO4 can be naturally ex-

plained provided the parameters A and B in the

ground-state energy fall into a broad region of the

parameter space denoted as the phase I in the dia-

gram presented in Fig.3.

To conclude, the suggested computational scheme

of QC cluster calculations may be extended and ap-

plied to a description of selective RIXS transitions

in other perovskites as well as to the study of mag-

netic properties of strongly correlated electron sys-

tems.
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